Introduction	Empirical Strategy	Results	Appendix A1
00	000000	0000	

Introduction of behavioural responses to EUROMOD - Applying the Austrian family tax credit

Paul Eckerstorfer¹ Friedrich Sindermann¹ Markus Tiefenbacher²

¹Austrian Parliamentary Budget Office

²Department for Social and Economic Sciences University of Salzburg

17th of October 2018 at Vienna EUROMOD Workshop

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Introduction	
00	

Empirical Strategy

Results

Appendix A1

The 2019 Austrian Family Tax Credit...

Bundesministerium Finanzen

Berechnen Sie Ihren persönlichen Vorteil: familienbonusplus.at

Introduction	
•0	

Results

Appendix A1

... The Family Bonus Plus - "FBP"

"[...] the biggest family relief in history."

Introduction	Empirical Strategy
•0	000000

Appendix A1

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

... The Family Bonus Plus - "FBP"

"[...] the biggest family relief in history."

Results

What is it?

- up to \in 1500 (500) tax credit per year per child<18 (>18)
- I direct € 250 tax reimbursement for low income lone parents and single earners
- cannot reduce initial tax burden below zero
- claimable 100 % or 50:50 (mandatory split between alimony debtor & creditor)
- replacing existing child allowance & deductibility of child care costs

Introduction	Empirical Strategy
•0	000000

Results

Appendix A1

... The Family Bonus Plus - "FBP"

"[...] the biggest family relief in history."

What is it?

- up to \in 1500 (500) tax credit per year per child<18 (>18)
- direct € 250 tax reimbursement for low income lone parents and single earners
- cannot reduce initial tax burden below zero
- claimable 100 % or 50:50 (mandatory split between alimony debtor & creditor)
- replacing existing child allowance & deductibility of child care costs

Why including behavioral responses?

- Expanding static EUROMOD model
- Reducing uncertainty about actual distributive & fiscal effects (of any other policy)
- Contributions, among others, Van Soest (1995), Hoynes (1996), Creedy and Kalb (2006), Löffler et al. (2013), Bargain et al. (2014)

Introduction	Empirical Strategy	Results	Appendix A1
0•	000000	0000	

Labor Supply Model

Estimating labor supply responses induced by changes in the tax-benefit system via a structural discrete choice model **in four steps**:

- Specifying a model explaining labor supply behavior: Utility maximizing individuals in the trade-off between leisure and consumption
- 2 Calculation of budget constraint according to household composition and tax benefit system (conducted in EUROMOD) for each discrete labor supply level.
- 3 Estimating model using individual's labor supply and budget constraint (disposable income) at different discrete labor supply levels.
- Estimated model parameters then used as an "EUROMOD Add-On" for simulating (labor supply side) second-order effects of any policy changes.

Introduction	Empirical Strategy	Results	Appendix A1
00	•00000	0000	

Basic Model

Discrete set of income-leisure combinations $(y_{ij}, l_{ii}^f, l_{ii}^m)$,

where...

 y_{ij} denotes disposable income of household i choosing alternative j $l^k_{ij}\;(k=f,m)$ denotes leisure choice of partners in couple household

Labor supply choices of households:

- Female (male) individual choice set of 6 (4) alternatives, given by the average working hours in intervals: 0, 1 10, 11 20, 21 30, 31 40, > 40(0, 1 - 20, 21 - 40, > 40).
- Coordinated couple households optimize across 24 choice combinations, singles across 6 (4) alternatives.
- Non-couple households with two (three) employable members are duplicated (tripled), each time allowing one member to choose and keeping labor supply choice of other half (two thirds) fixed.

Introduction	Empirical Strategy	Results	Appendix A
00	00000	0000	

Calculation of Disposable Income y_{ij} in EUROMOD

$$y_{ij} = d(w_i^f h_{ij}^f, w_i^m h_{ij}^m, I_i, X_i),$$
(1)

where...

 w_i^k denotes before tax hourly wage rate (exogenous and independent of the chosen alternative) $h_{ij}^k = 1 - l_{ij}^k$ denotes normalized time endowment

 I_i and X_i denote non-labor income and household characteristics, respectively

- A standard Heckman-corrected wage equation is estimated to predict observed and unobserved wages (Van Soest, 1995).
- Wage prediction errors are taken into account, as ignoring them would subsequently yield inconsistent estimates of the preference parameters (Creedy & Kalb, 2005).

Introduction	Empirical Strategy	Results	Appendix A
00	00000	0000	

Utility Function (1)

- Households choose utility maximizing working hours.
- Total utility given by:

$$V_{ij} = U_{ij}(y_{ij}, l_{ij}^f, I_{ij}^m, X_i) + \epsilon_{ij},$$
⁽²⁾

where ...

 U_{ij} describes the deterministic component ϵ_{ij} describes random component, following an Extreme Value distribution type I

• Deterministic part U_{ij} given by:

$$U_{ij} = \alpha_{yi} ln(y_{ij}) + \alpha_{cc} (ln(y_{ij}))^{2} + \alpha_{li}^{f} ln(l_{ij}^{f}) + \alpha_{li}^{m} ln(l_{ij}^{m}) + \alpha_{ll}^{f} (ln(l_{ij}^{f}))^{2} + \alpha_{ll}^{m} (ln(l_{ij}^{m}))^{2} + \alpha_{lll}^{f} (ln(l_{ij}^{f}))^{3} + \alpha_{lll}^{m} (ln(l_{ij}^{m}))^{3} + \alpha_{yl}^{f} ln(y_{ij}) ln(l_{ij}^{f}) + \alpha_{yl}^{m} ln(y_{ij}) ln(l_{ij}^{m}) - \eta_{i}^{f} \cdot 1(l_{ij}^{f} < 1) - \eta_{i}^{m} \cdot 1(l_{ij}^{m} < 1),$$
(3)

where...

 $\boldsymbol{\eta}_i^k$ is a separate term to account for fixed cost of work

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Introduction	Empirical Strategy	Results	Appendix A1
00	000000	0000	

Utility Function (2)

• Coefficients on consumption, leisure and fixed cost of work are given by:

$$\alpha_{yi} = \alpha_y^0 + Z_i^y \alpha_y, \tag{4}$$

$$\alpha_{li}^{k} = \alpha_{l}^{\mathbf{0}k} + Z_{i}^{lk}\alpha_{l}^{k} + u_{i}^{k}, \qquad (5)$$

$$\eta_i^k = \eta^{0k} + Z_i^k \eta^k, \tag{6}$$

where...

k = f, m

 Z_i denotes taste shifters (age, presence of children, elderly dependents, education, family status...)

 u_i^f and u_i^m are error terms capturing **unobserved heterogeneity** in preferences. Halton draws (for computational reasons so far only 1) guarantee more symmetric coverage than independent random draws from the normal distribution (Train, 2003)

• **Restrictions to the model:** Interior points of the budget set are excluded. Utility must increase with income in some relevant region of the (y, l^f, l^m) space (Van Soest, 1995). No restriction with respect to leisure.

Introduction	Empirical Strategy	Results	Appendix A1
00	000000	0000	

Likelihood Function (1)

If households choose alternative j for which V_{ij} is largest & if random component follows extreme value type I distribution, conditional probability for each household i to choose alternative j is given by:

$$P_{ij}(U_{ij} > U_{ik}, \forall k \neq j) = \frac{\exp(U_{ij})}{\sum_{k=1}^{M} \exp(U_{ik})}$$
(7)

 To obtain the unconditional probability one has to integrate out both, wage error term and unobserved heterogeneity error term u^k_i.

$$L = \prod_{i=1}^{N} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sum_{j=1}^{M} \left(\frac{\exp(U_{ij}(y_{ij}, l_{ij}^{f}, l_{ij}^{m}, X_{i} \mid \hat{w}_{i}^{f}, \hat{w}_{i}^{m}, u_{i}^{f}, u_{i}^{m}))}{\sum_{k=1}^{M} \exp(U_{ik}(y_{ik}, l_{ik}^{f}, l_{ik}^{m}, X_{i} \mid \hat{w}_{i}^{f}, \hat{w}_{i}^{m}, u_{i}^{f}, u_{i}^{m}))} D_{ij} \right) f_{w}(\hat{w}^{f}, \hat{w}^{m})g_{u}(u^{f}, u^{m})d\hat{w}^{f}d\hat{w}^{m}du^{f}du^{m},$$
(8)

where ...

 D_{ij} denotes an indicator variable turning 1 for the observed choice $f_w(\hat{w}^f, \hat{w}^m)$ denotes density for pred. wages and $g_u(u^f, u^m)$ density for (u^f, u^m)

Introduction	Empirical Strategy	Results	Appendix
00	00000	0000	

Likelihood Function (2)

- Consideration of several random components complicates Maximum Likelihood estimation considerably. ► Method of simulated maximum likelihood has to be applied to obtain estimates for preference parameters (Train, 2009), (Loeffler et al., 2014).
- In practice achieved by averaging conditional probability over a large number of draws R.

$$ln(SL) = \sum_{i=1}^{N} ln\left(\sum_{j=1}^{M} \frac{1}{R} \sum_{r=1}^{R} \frac{\exp(U_{ij}(y_{ij}, l_{ij}^{f}, l_{ij}^{m}, X_{i} \mid \hat{w}_{ir}^{f}, \hat{w}_{ir}^{m}, u_{ir}^{f}, u_{ir}^{m}))}{\sum_{k=1}^{M} \exp(U_{ik}(y_{ik}, l_{ik}^{f}, l_{ik}^{m}, X_{i} \mid \hat{w}_{ir}^{f}, \hat{w}_{ir}^{m}, u_{ir}^{f}, u_{ir}^{m}))}D_{ij}\right)$$
(9)

A1

Introduction	Empirical Strategy	Results	Appendix
00	000000	0000	

Labor Supply Elasticity Elasticities across Subgroups

10 % increase in gross income yields x % change in labor supply

		single		couple	
		female	male	female	male
h	baseline	28.64	36.48	25.12	39.77
average nours	scenario	28.99	36.63	25.49	40.02
elasticity	overal	.1210	.0399	.147	.0615
	extensive	.1045	.0330	.058	.0465
	intensive	.0165	.0069	.089	.0150
cross wage elasticity	overal			.005	002
	extensive			003	001
	intensive			.008	001

Data

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Α1

Introduction	Empirical Strategy	Results	Appendix A1
00	000000	0000	

Distributive Effects of FBP: Only Families

Introduction	Empirical Strategy	Results	Appendix A1
00	000000	0000	

Distributive Effects of FBP: Entire Population

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 - のへで

Introduction	Empirical Strategy	Results	Appendix A1
00	000000	○○○●	

Main Findings

	Status Quo	Satus Quo w/o KBK & KFB	static FBP w/o KMB	static FBP	dynamic FBP
Gini	0.249	0.253	0.247	0.246	0.244
Δ tax revenue		500	-1540	-1560	-1536
in million €					

where... KBK = deduction of child care costs, KFB = child allowance, KMB = direct reimbursement for low income lone parents, FBP= "Family Bonus Plus"

- Implementation of a "EUROMOD Add-On" tool accounting for second order effects.
- Weak labor supply elasticities found for recent Austrian data.
- Regarding implementation of 2019 "FBP": Compared to static assessment a dynamic one slightly decreases both, inequality and loss in tax revenue.

Introduction	Empirical Strategy	Results	Appendix A1
00	000000	0000	

- SILC 2016 contains 6.000 households with 13.016 individual observation.
- Remaining 3.518 employable individuals in Heckman-corrected wage equation.
- Among them 2.272 singles and 1.246 couples.
- ~ 292.000 distinct households with ~ 608.000 individuals taking into account 4, 6 or 24 labor supply choices and 10 wage draws.

イロア 人口 ア イヨア イヨア コー ろくぐ

back