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Abstract

In this paper I study how PAYG pension systems of the notional defined contribution

type can be designed such that they remain financially stable in the presence of

increasing life expectancy. For this to happen two crucial parameters must be set

in an appropriate way. First, the remaining life expectancy has to be based on

a cross-section measure and, second, the notional interest rate has to include a

correction for labor force increases that are only due to rises in the retirement age

which are necessary to “neutralize” the increase in life expectancy. It is shown that

the self-stabilization is effective for various patterns of retirement behavior including

a linearly rising, a constant, an optimally chosen and a stochastic retirement age.
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1 Introduction

Pension systems around the world have come under severe pressure from the two-sided

demographic development: declining fertility rates and increasing life expectancy. The

latter aspect is of particular interest, since it represents an ongoing process with consider-

able and far-reaching budgetary consequences. For the EU-countries, e.g., life expectancy

at birth is projected to increase over the next 50 years by about 7.5 years. This increase

is one of the main factors behind the projected rise in the old-age dependency ratio from

25.4% in 2008 to 53.5% in 2050 (EPC, 2009). This development is a particular challenge

for pay-as-you-go (PAYG) pension systems. In their traditional organization PAYG sys-

tems are based on the implicit assumption of a stationary age structure while ideally they

should be designed in such a way as to automatically react to the steady increases in

longevity. Recent issues of the OECD’s Pensions at a Glance deal in detail with the links

between life expectancy and retirement and it documents that “around half of OECD

countries have elements in their mandatory retirement-income provision that provide an

automatic link between pensions and a change in life expectancy” (OECD 2011, p. 81). In

fact, the report continues to state that “the rapid spread of such life-expectancy adjust-

ments has a strong claim to be the most important innovation of pension policy in recent

years” (OECD 2011, p. 82). In a related paper Edward Whitehouse calls this development

a “quiet revolution in pension policy” (Whitehouse 2007, p. 5).

Despite this claim by the OECD that automatic life-expectancy-adjustments are a

“quiet revolution” and the “most important innovation” in pension policy there does not

exist much empirical and—even less though—theoretical work on the basic functioning,

the appropriate design and the main properties of these automatic mechanisms. In this

paper I try to fill this gap and focus on the effect of increasing life expectancy in notional

defined contribution (NDC) systems (cf. Holzmann & Palmer 2012). NDC systems are

of particular interest for a number of reasons. First, they are an increasingly popular

variant of the PAYG pension system and—starting with the pioneering work of Sweden—

currently around 10 countries have implemented a NDC framework. Second, international

institutions like the World Bank, the OECD and the European Commission use the NDC

structure as a useful reference point (if not benchmark) to discuss reform proposals and to

enhance the transnational portability of pension rights. Third, NDC systems are a natu-

ral starting point to analyze the linkage between life expectancy and retirement age since

they are explicitly designed in a way such as to react to demographic changes. As will be

described in a later section, NDC systems take increases in life expectancy into considera-
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tion when the notional capital (i.e. the accumulated contributions) is annuitized. Longer

life expectancy will, ceteris paribus, decrease pension benefits, while later retirement will

increase them.

While this basic mechanism has been one of the main rationales behind the intro-

duction and propagation of NDC systems, much less is known about the details of its

functioning and its optimal design. This, however, is important since self-stabilization

will only be achieved if the NDC system is built on accurate construction principles, as

will be shown in this paper. For this purpose, I will assume throughout the paper that life

expectancy increases in a linear fashion. This is in line with the demographic literature.

Furthermore, it has been argued that this linear development is also the best prediction

for the behavior of life expectancy for the next 100 years (cf. Oeppen & Vaupel 2002). I

show that given this set-up an appropriate design of a NDC system involves the deter-

mination of two crucial parameters. First, the “notional interest rate” (or the “rate of

return”) that specifies how past contributions to the pension system are revalued over

time.1 Second, the measure of “remaining life expectancy” that is used to calculate the

first pension benefit at the time of retirement.

The prevailing opinion on this topic is that one should use the growth rate of the wage

bill (or, to be precise, the sum of total contributions) as the notional interest rate2 and

the cohort (i.e. forecasted) life expectancy in order to determine the size of the pension

annuity.3 I will show that this conventional wisdom has to be corrected along both

dimensions. First, in as far as the measure of life expectancy is concerned I demonstrate

that it is sufficient to use periodic life expectancy to calculate the annuity. This is an

attractive feature since the determination of remaining life expectancy is then only based

on known, cross-section data and does not involve a process of (potentially controversial

and politicized) forecasting. Second, I also show that the use of the growth rate of the

wage bill is not appropriate in the case of increasing life expectancy. The reason for this

is straightforward. When average longevity increases then the cohort-specific retirement

age has to rise as well just in order to keep the proportion of retired years to working years

1In the generic version of the NDC system the rate at which ongoing pension are adjusted over time
is also set equal to the notional interest rate.

2“To maintain financial equilibrium, the notional interest rate [. . .] should be equal to the growth of the
covered wage bill, which reflects average wage growth and changes in the labor force” (Ch loń-Domińczak
et al. 2012, p. 52). Similar quotes can be found in Börsch-Supan (2003, p. 38) or Palmer (2012, p. 315).

3“The second main mechanism, after the correct choice of the notional interest rate, for ensuring
the solvency of an NDC scheme involves the application of the correct (future) remaining cohort life
expectancy” (Holzmann & Palmer 2012, p. 24). Similar quotes can be found in Ch loń-Domińczak et al.
(2012, p. 43) or Palmer (2012, p. 310).
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constant. This “neutralizing” postponement of retirement, however, increases by itself the

total size of the labor force even if the size of cohorts is constant. Using the growth rate of

the wage bill would thus grant an “excessive” rate of return thereby causing a structural

deficit of the pension system. The appropriate notional interest rate has to be corrected

for this effect. I show that a combination of this adjusted notional interest rate and

period life expectancy as the concept to calculate the annuity establishes a self-stabilizing

social security system. Whether the budget is balanced in every period or only over time

depends on the pattern of retirement behavior as is shown for various assumptions. If

the retirement age is always proportional to life expectancy (such that the dependency

ratio stays constant over time) then the budget of the NDC system is balanced in every

period. The same is true (although only up to a first-order approximation) for the case

where the retirement age is assumed to stay constant over time. I also look at the case

where the retirement age is chosen in an optimal fashion. For a benchmark case that

corresponds to the set-up that is frequently studied in the related literature, the outcome

is also a retirement behavior that is associated with a perfectly or approximately balanced

budget. Finally, I analyze a situation where the retirement age is a random variable that

fluctuates over time. I show that in this case the deficit is on average zero but since the

annual deficits will fluctuate around this level the balance will only be achieved in the

long run.

The related literature includes empirical analyses, simulation studies and also a small

number of theoretical papers. Whitehouse (2007), OECD (2011) and OECD (2012) con-

tain information about the links between life expectancy and various parameters in exist-

ing pension systems of OECD countries. Alho et al. (2005) and Auerbach & Lee (2009)

use stochastic simulation models in order to evaluate and compare the risk-sharing char-

acteristics of alternative public pension schemes. Since these models allow for a stochastic

development of mortality rates they also—implicitly—show how different systems react

to changing life expectancy. On the other hand, these papers do not include a systematic

discussion on the working and the different design features of automatic life expectancy

adjustments. Shoven & Goda (2008) and Heeringa & Bovenberg (2009) are related papers

that study how “life expectancy indexation” could be used to stabilize the budget of the

public pension systems in specific countries (the US and the Netherlands, respectively).

The latter work also contains a stylized model of the use of changes in the retirement

age in order to balance increases in longevity. The paper, however, does not compare

different formulations of such an indexation. Andersen (2008), on the other hand, uses a

two-period model to derive that a “social security system cannot be maintained by simply
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indexing pension ages to longevity”. This is in contrast to the results of the present paper

and I will discuss later how to explain this discrepancy. Ludwig & Reiter (2010) study

the optimal policy response of a social planner in the presence of demographic shocks.

Valdés-Prieto (2000) discusses the ability of NDC system to run on “auto-pilot” but he

mainly focuses on the role of changing fertility patterns. Settergren & Mikula (2006) and

Palmer (2012) present results that are related to the ones of the present paper although

they derive them in a different framework (involving the “turnover duration”) and they

also lack an explicit treatment of the case with constantly increasing life expectancy.

The paper is structured as follows. In the next section I discuss the assumption about

the development of life expectancy and I present the structure of a general PAYG system.

In section 3 I then describe and formalize the main features of a NDC system and I discuss

the two main parameters: the notional interest rate and the measure of life expectancy. In

section 4 I show how one can determine these two parameters in order to design a NDC

system that is self-stabilizing for various assumptions concerning retirement behavior.

Section 5 concludes.

2 The Model

2.1 Basic set-up

I work with a model in continuous time (cf. Bommier & Lee 2000). In every instant of

time t a generation is born that has size N(t) and lives for T (t) years. All members of

generation t start to work as soon as they are born and they remain in the labor market

for R(t) periods, earning a wage W (t + a) during each of these working periods a ∈
[0, R(t)].4 Thereafter, they receive a pension benefit P (t, a) in each period of retirement

a ∈ [R(t), T (t)]. While working, individuals pay contributions to the PAYG pension

system at rate τ(t+ a). The (relative) pension level is defined as q(t, a) = P (t,a)
W (t+a)

and the

growth rate of wages is denoted by g(t), i.e. W (t) = W (0)e
∫ t
0 g(s) ds.

As far as the development of life expectancy is concerned I make a number of assump-

tions that allow for simple and intuitive expressions. First, I focus on a representative

member of generation t and I abstract from all intragenerational differences. In particular,

I assume that all members of a generation reach their cohort life expectancy T (t). Second,

I assume that the retirement age is non-decreasing over time, i.e. R(t+ dt) ≥ R(t). This

4I abstract here from the existence of an age-earnings profile. At each point in time all workers are
assumed to earn the same wage.
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makes it possible to express all aggregate values in a compact form without the use of

“indicator variables”. Third, I assume that the development of life expectancy follows a

deterministic process that is perfectly known by all agents. A number of important issues

that arise in the case of aggregate and idiosyncratic longevity risk are discussed in Alho

et al. (2012). Fourth, life expectancy is assumed to increase linearly over time:

T (t) = T (0) + γ·t, (1)

where 0 ≤ γ < 1. This assumption is in line with the empirical literature. Oeppen &

Vaupel (2002), e.g., analyze “record female life expectancy” (i.e. the highest value for

female life expectancy reported in any country for which data are available) from 1840

to 2000 and they show that it follows an almost perfect linear development with a slope

parameter of 1/4.5 This is confirmed by Lee (2003) who refers to a number of studies

that have found a linear trend in life expectancy for a large sample of industrial countries

with slope parameters between 0.15 and 0.25. I deal with the case where life expectancy

is assumed to reach a biologically determined maximum age in a companion paper.

In order to be able to distinguish clearly between the viewpoint of generation t (i.e. the

one born in t) and the outlook of the pension system in period t I introduce two further

variables. T̃ (t) stands for period life expectancy, i.e. the highest age observed in period

t. R̃(t), on the other hand, denotes the number of working years of the generation that

retires in period t. In general it will be the case that T̃ (t) 6= T (t) and R̃(t) 6= R(t).

Period life expectancy in period t can be calculated from cohort life expectancy by

the following relation: T (t− T̃ (t)) = T̃ (t). It comes out as:

T̃ (t) =
1

1 + γ
T (t). (2)

The increase in period life expectancy is given by dT̃ (t)
dt

= γ
1+γ

. A value of γ
1+γ

= 1/4 thus

implies γ = 1/3, while γ
1+γ

= 1/5 corresponds to γ = 1/4. For the following numerical

examples I will use the latter value which is about the mid-point of the estimates reported

in Lee (2003).6

5Their data refer to the “mean age at death under current mortality conditions”, i.e. to period life
expectancy. Equation (1), however, refers to the development of cohort life expectancy. I will show later
that the estimated slope in Oeppen & Vaupel (2002) implies a value of γ = 1/3.

6In the demographic literature there exist a number of papers that have studied the relation between
different life expectancy concepts in standard mortality models. Goldstein (2006) and Missov & Lenart
(2011) show, e.g., that under special assumptions (like a “linear shift model” or a Gompertz mortality
model with constant yearly improvements at all ages) period and cohort life expectancy increase in a
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2.2 Budget of the pension system

The total size of the active population L(t), of the retired population B(t) and the result-

ing dependency ratio z(t) are given by:

L(t) =

∫ R̃(t)

0

N(t− a) da, (3)

B(t) =

∫ T̃ (t)

R̃(t)

N(t− a) da, (4)

z(t) =
B(t)

L(t)
. (5)

The total revenues I(t) and the total expenditures O(t) of the pension system in a certain

period t are:

I(t) =

∫ R̃(t)

0

τ(t)W (t)N(t− a) da, (6)

O(t) =

∫ T̃ (t)

R̃(t)

P (t− a, a)N(t− a) da. (7)

The total deficit (or surplus) is denoted by:

D(t) = O(t)− I(t), (8)

while the deficit ratio dt is written as:7

d(t) =
O(t)

I(t)
. (9)

A balanced budget thus requires that D(t) = 0 or d(t) = 1, ∀t.

2.3 Demographic Steady State

For the following analysis it is helpful to use a steady state (or rather a “balanced growth

path”) as a reference point. It is a “triple stationary state” that involves the demography,

linear fashion. The formulation in (1) can thus also be understood as a short-cut for a fully-fledged model
with mortality rates.

7Alternatively, one could also use the deficit relative to “national income” (i.e. D(t)
W (t)L(t) ) or simply the

deficit-revenues ratio (D(t)
I(t) = d(t) − 1). In general, it does not matter which concept is used since they

all lead to qualitatively similar patterns.
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the economy and the pension system. First, the demographic situation is assumed to be

constant over time, i.e. N(t) = N and T (t) = T . Second, the economy grows at a constant

rate (g(t) = g). Third, also the main parameters of the pension system do not change

and the retirement age, the contribution rate and the average pension level are constant,

i.e.: R(t) = R, τ(t) = τ and q(t) = P (t)
W (t)

=
∫ T
R
P (t−a,a) da.

W (t)
= q. From (3) and (4) it then

follows that also z(t) = B(t)
L(t)

= T−R
R
≡ z is constant over time, where z is the steady state

dependency ratio and also the ratio of the average years a person stays in pension to the

average years he or she is in work. A permanently balanced budget then requires that in

the steady state the following relation must hold:

τ̄ = q̄z̄. (10)

Each society may choose its preferred values for the steady state contribution rate, pension

level and retirement age, as long as condition (10) is fulfilled and as long as τ < 1.

3 A Notional Defined Contribution Pension System

3.1 Formal expression of a NDC system

Thus far I have left open how the pension levels P (t− a, a) of the various retired cohorts

at a certain period t are determined. It is in this area that one observes the biggest cross-

national differences and also the main rift between defined benefit and defined contribution

systems. In this paper I focus on the NDC system that has been implemented first in

Sweden and has later been also adapted by a number of additional countries like Italy,

Poland, Latvia, Mongolia, Turkmenistan etc. It is now also often used as a benchmark

PAYG model by international institutions like the World Bank (Holzmann & Hinz 2005),

the OECD (2011) or the European commission (EPC, 2009).8

The first crucial feature of every NDC system is that the contribution rate is fixed at

τ(t) = τ for all periods. In Sweden, e.g., each insured person pays 16% of its earnings

(up to a ceiling) as contributions to the notional account. The value of the “deposits”

on this account grow with the “notional interest rate” ρ(t) which in Sweden is defined as

the average growth rate of wages. The total value in this account is called the notional

capital K(t, a) that generation t accumulates over the working periods a ∈ [0, R(t)]. The

8Detailed descriptions can be found in Palmer (2012) or Ch loń-Domińczak et al. (2012).
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final amount of this notional capital (before it is turned into an annuity) is given by:

K(t, R(t)) =

∫ R(t)

0

τW (t+ a)e
∫ t+R(t)
t+a ρ(s) ds da, (11)

where the cumulative factor e
∫ t+R(t)
t+a ρ(s) ds indicates how the contribution τW (t+a) that is

paid into the pension system in period t+a is revalued when calculating the final amount

of the notional capital in period t + R(t) (the period of retirement). The specification

of the notional interest rate is one of the crucial parameters in a NDC system and I will

later discuss various possibilities how it can (and should) be defined.

The first pension that is received by generation t in period t+R(t) is given by:

P (t, R(t)) =
K(t, R(t))

Γ(t, R(t))
, (12)

where the notional capital for generation t is transformed into an annuity by using the

remaining life expectancy Γ(t, R(t)) of generation t at the retirement age R(t).9 The

conceptual measure that is used to calculate the remaining life expectancy (period vs.

cohort life expectancy) is another crucial factor for the specification of a NDC system. I

will come back to this issue below.

Existing pensions are adjusted according to:

P (t, a) = P (t, R(t))e
∫ t+a
t+R(t)ϑ(s) ds, (13)

for a ∈ [R(t), T (t)] and where ϑ(s) stands for the adjustment rate in period s and the cu-

mulative adjustment factor e
∫ t+a
t+R(t)ϑ(s) ds indicates how the first pension P (t, R(t)) received

by generation t at age R(t) is adjusted to give the pension payment in period t+ a.

Inserting equations (11), (12) and (13) into (7) and assuming ϑ(t) = ρ(t) leads to the

following expression of expenditures (see appendix A.1):

O(t) = τW (t)

∫ T̃ (t)

R̃(t)

∫ R(t−a)

0

[
e
∫ t
t−a+b(ρ(s)−g(s)) ds

]
db

Γ(t− a,R(t− a))
N(t− a) da. (14)

The question is, whether one can find definitions for ρ(t) and Γ(t, R(t)) such that (14) de-

9In order to keep the analysis simple I abstract here from the issue of front-loading as is currently
used in Sweden. Under this regime a real growth rate of 1.6% is used to “frontload” part of the expected
pension adjustments thereby increasing the initial pension. Existing pensions are then only adjusted with
the difference between the actual growth rate and this stipulated growth rate of 1.6%.
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velops in line with the revenues of the pension system given by (6), i.e. I(t) = τW (t)L(t).

In order to focus clearly on the issue of increasing life expectancy, I will assume in the

following that the size of birth cohorts is constant:

N(t) = N. (15)

3.2 Crucial choices in NDC systems

The crucial factors that have to be defined at the outset for a functioning NDC system

are thus the notional interest rate ρ(t), the adjustment factor ϑ(t) and the measure of life

expectancy that is used to specify the remaining life expectancy Γ(t, R(t)).

To start with the latter there exist two variants. One can either use period (or cross-

section) life expectancy T̃ (t + R(t)) or cohort (or forecasted) life expectancy T (t) to

calculate the annuity payment for generation t. This means either:

Γ(t, R(t)) = T̃ (t+R(t))−R(t) (16a)

or

Γ(t, R(t)) = T (t)−R(t). (16b)

In as far as the notional interest rate is concerned there are two possible methods of

indexation that are often discussed in the literature and that are used in real-world pension

systems: an indexation with the growth rate of average wages and one with the growth

rate of the wage bill (or rather the growth rate of the sum of contributions). I will only

discuss methods where the notional interest rate and the adjustment rate are identical,

i.e. where ϑ(t) = ρ(t). The formulas are given by:

ρ(t) = gW (t) (17a)

or

ρ(t) = gW (t) + gL(t), (17b)

where gW (t) ≡ Ẇ (t)
W (t)

, gL(t) ≡ L̇(t)
L(t)

, Ẇ (t) ≡ dW (t)
dt

and L̇(t) ≡ dL(t)
dt

. Using the definitions

for W (t) = W (0)e
∫ t
0 g(s) ds and L(t) =

∫ R̃(t)

0
N(t− a) da = R̃(t)N (due to assumption (15))

one can calculate that:

gW (t) = g(t), (18)
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gL(t) =
dR̃(t)

dt

1

R̃(t)
. (19)

Given that life expectancy is assumed to increase linearly according to (1) it is a natural

benchmark to assume that the retirement age is a fixed proportion of life expectancy and

thus also increases in a linear fashion. In particular, assume that:

R(t) = µT (t), (20)

where 0 < µ < 1. One can use the relation that R(t− R̃(t)) = R̃(t) to derive that R̃(t) =
µ

1+γµ
T (t). Setting the retirement age according to (20) thus leads to a situation where

the dependency ratio z(t) is constant and given by z(t) = z = T̃ (t)−R̃(t)

R̃(t)
= 1−µ

µ(1+γ)
.10 The

period-specific retirement age R̃(t) increases linearly with dR̃(t)
dt

= γµ
1+γµ

and finally gL(t) =
dR̃(t)/dt

R̃(t)
= γ

T (t)
= γ

(1+γ)T̃ (t)
. This result delivers an important insight. If life expectancy

increases and if every cohort prolongs its working life in such a manner as to counter

this increase and to keep the dependency ratio constant then there will be a continuous

increase in the size of the labor force even if the size of cohorts remains constant. This is

simply a consequence of the fact that each cohort postpones its retirement by a little bit,

as specified in (20). In fact, this behavior seems like the “natural” and most appropriate

reaction to the increase in life expectancy. Taking this into consideration it also appears

unjustified that this “necessary” and “appropriate” increase in the labor force should lead

to a higher notional interest rate as would be the case if one uses the growth rate of the

wage bill (cf. (17b)) as the relevant concept. It seems more reasonable to propose a new

concept that defines the notional interest rate as the growth rate of the wage bill adjusted

for the necessary increase in retirement age due to increasing life expectancy. This leads

to the third concept for the determination of the notional interest rate and the adjustment

factor that I will study in the following:

ρ(t) = gW (t) + gL(t)− γ

(1 + γ)T̃ (t)
. (17c)

10If there exists a specific target z̄ for the dependency ratio one has to set µ = 1
1+z̄(1+γ) in order to

achieve z(t) = z̄.
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4 A self-stabilizing NDC system

Looking at the expression for total pension expenditures O(t) in (14) it does not seem

obvious whether it is at all possible to find rules for the determination of the notional

interest rate and remaining life expectancy such as to implement a NDC system that has

a budget that is balanced (at least over the long run). The main challenge is to guarantee

financial sustainability for a large (or even an arbitrary) pattern of retirement ages. In the

following I will therefore look at various assumptions concerning the retirement choices

and their effects on the long-run budget of the NDC system.

4.1 Retirement age is proportional to life expectancy

As a useful benchmark case I look first at the situation where the retirement age is a fixed

proportion of life expectancy as specified in (20) and repeated here:

R(t) = µT (t). (21a)

As said above, this seems to be a “natural” and intergenerational equitable reaction

to the continuous increase in life expectancy where for every generation the proportion

of retirement years to working years stays constant at T (t)−R(t)
R(t)

= 1−µ
µ

. As previously

mentioned, in this case the labor force grows with gL(t) = γ

(1+γ)T̃ (t)
and thus the notional

interest rate (17c) is given by ρ(t) = g(t) which is the same as using average wage growth

(cf. (17a)).

The following proposition specifies how to design a NDC system in this situation such

that it is compatible with long-run sustainability.

Proposition 1 Assume that life expectancy increases in a linear fashion and that the size

of birth cohorts is constant. If the retirement age is a fixed proportion of life expectancy

as assumed in (21a) then a NDC system leads to a balanced budget if the following two

conditions are fulfilled: (i) The notional interest rate and the adjustment factor are equal

to the growth rate of average wages (17a) or the adjusted growth rate of the wage bill (17c)

and (ii) the remaining life expectancy is calculated by using period life expectancy as in

(16a).

Proposition 1 is surprising since it contradicts claims about the most reasonable set-up

of a NDC system that can be found in the related literature.11 There it is stated that

11Examples for this have been quoted in the introduction. Proposition 1 is in contrast to the finding of
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Table 1: The deficit-ratio for a retirement age that is proportional to life ex-
pectancy

(1) (2) (3)
Notional Interest Rate — Growth Rate of:

Average Wages Wage Bill Adjusted Wage Bill

Period Life Expectancy 1 ≈ 1 + γ
2

1

Cohort Life Expectancy 1
1+γ

≈ 1− γ
2

1
1+γ

Note: The table shows the period deficit ratio d(t) = O(t)
I(t) for various assumption about

the notional interest rate and the measure of remaining life expectancy. Period [cohort]
life expectancy is defined as in (16a) [(16b)]. The notional interest rate is given by one of
the expressions in (17a), (17b) and (17c), respectively. Furthermore, it is assumed that
retirement age increases in a linear fashion according to R(t) = µT (t).

the most appropriate design would involve a combination of cohort life expectancy (cf.

(16b)) and the unadjusted growth rate of the wage bill (cf. (17b)).

The proof of the proposition can be found in appendix A.2. In Table 1 I summarize the

budgetary outcomes for all combinations of assumptions (17a) to (17c) and assumptions

(16a) and (16b). As documented in Table 1 if one uses the notional interest rate ρ(t) = g(t)

together with period life expectancy (16a) then the budget of the pension system is always

balanced, i.e. D(t) = 0 and d(t) = 1 for every period.

For the stability of the system it is crucial that one uses the adjusted growth rate of the

wage bill (17c) and not the unadjusted wage bill growth rate (17b) as is often suggested

in the literature. For γ > 0 the latter concept would prescribe a higher notional interest

rate (ρ(t) = g(t)+ γ

(1+γ)T̃ (t)
) which would cause a permanent deficit of the pension system.

In particular, in appendix A.2 I show that the deficit ratio in this case is approximately

equal to d(t) = 1 + γ
2
. This is a non-trivial amount. For a realistic value of γ it would

amount to a permanent deficit ratio of about 12.5%. The reason for this imbalance is that

such a system would grant an extra rate of return due to the permanent increase in the

Andersen (2008) that an “indexation of pension ages to longevity may seem a simple and fair solution”
which, however, “is not in the feasibility set” (p. 634f.). The main reason for the difference between
the results stems from the use of different notions of “proportionality”. Andersen (2008) uses a rather
unconventional definition of the relative span of retirement which is not defined as the length of the
retirement period to the total length of working life but rather only to the years of work since the
“middle age”.
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labor force which is, however, just a necessary reaction to the increases in life expectancy

and should be neglected when determining the rate of return.

On the other hand, if one uses adjusted wage bill growth (17c) but cohort life ex-

pectancy (16b) instead of period life expectancy (16a) then the deficit ratio is given by

d(t) = 1
1+γ

and the pension system runs a permanent surplus. The use of cohort life

expectancy (as frequently recommended for NDC systems) is thus “overambitious” as it

will lead to excessively small annuities that cause a permanent surplus in the budget. It

is sufficient to use period life expectancy if this is combined with the appropriate notional

interest rate (17c).12

4.2 Retirement age stays constant

It is certainly an optimistic scenario to assume that retirement age always adjusts in lock-

step to the increases in life expectancy. As the opposite (very “pessimistic”) extreme one

could also assume that the retirement remains constant despite the advances in longevity:

R(t) = R. (21b)

Note that then the labor force is constant (gL(t) = 0) and thus the notional interest rate

(17c) is given by ρ(t) = g(t) − γ

(1+γ)T̃ (t)
. The following proposition contains the main

result.

Proposition 2 Assume that life expectancy increases in a linear fashion and that the

size of birth cohorts is constant. If the retirement age is fixed as assumed in (21b) then a

NDC system leads to an approximately balanced budget if the following two conditions are

fulfilled: (i) The notional interest rate and the adjustment factor are equal to the adjusted

growth rate of the wage bill (17c) and (ii) the remaining life expectancy is calculated by

using period life expectancy as in (16a).

The proof of proposition 2 can be found in appendix A.3 and the deficit ratios cor-

responding to the various combinatinos of assumptions are collected in Table 2. One

can derive that the combination of a notional interest rate set according to (17c) and a

remaining life expectancy that is based on period life expectancy as in (16a) leads to a

12Since the use of (16b) instead of (16a) leads to a permanent surplus while the use of (17b) instead
of (17c) to a permanent deficit one might want to know what happens if one were to combine (16b) and
(17b). The answer is that in this case the deficit ratio is approximately 1 − γ

2 (see appendix A.2) and
one faces a permanent surplus.
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Table 2: The deficit-ratio for a constant retirement age

(1) (2) (3)
Notional Interest Rate — Growth Rate of:

Average Wages Wage Bill Adjusted Wage Bill

Period Life Expectancy ≈ 1 + γ
2

≈ 1 + γ
2

≈ 1

Cohort Life Expectancy ≈ 1− γ
2

≈ 1− γ
2

≈ 1− γ

Note: The table shows the period deficit ratio d(t) = O(t)
I(t) for various assumption about

the notional interest rate and the measure of remaining life expectancy. Period [cohort]
life expectancy is defined as in (16a) [(16b)]. The notional interest rate is given by one of
the expressions in (17a), (17b) and (17c), respectively. Furthermore, it is assumed that
retirement age is constant at R(t) = R.

deficit ratio given by:

d(t) =
R

T̃ (t)

(
(2 + γ) ln(1 + γ)

2γ
− 1

)
+ 1 ≈ 1,

where the approximation is around γ = 0. So in this case the combination of (17c) and

(16a) leads to a budget that is approximately balanced in every period.13

It is interesting to study here what would happen if one uses a “conventional” notional

interest rate with the growth rates of either average wages (17a) or the wage bill (17b).

These two cases are now identical (since gL(t) = 0) implying a notional interest rate of

ρ(t) = g(t). Using period life expectancy one can calculate that:

d(t) =
(1 + γ) ln(1 + γ)

γ
≈ 1 +

γ

2
.

This seems to confirm the belief that the use of period life expectancy is not enough to

keep a NDC system in balance. The use of cohort life expectancy (16b), however, as is

often suggested as the better alternative is also not appropriate as it leads to a permanent

13One has to note, however, that the calculations abstract from the existence of a minimum pension.
If social security legislation prevents a fall of the relative pension level q(t) below some minimum level
qmin then a fixed retirement age will lead to an increasing deficit even in a NDC system.
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surplus.

d(t) =
ln(1 + γ)

γ
≈ 1− γ

2
.

The punchline of this consideration is that in the case of constant retirement ages and

a notional interest rate ρ(t) = g(t) both methods of calculating the remaining life ex-

pectancy for annuitization at the time of retirement lead to an unbalanced budget. The

first method is too “generous” causing persistent deficits while the second method is too

“harsh” leading to ongoing surpluses.

While the use of the adjusted growth rate of the wage bill as the notional interest

rate steers the system towards financial sustainability, the balance is not exact as stated

in proposition 2. The error of approximation, however, is rather small. Using γ = 1/4,

R = 45 and T (0) = 60 (such that z(0) = 1/3) one gets an exact value of d(0) = 1.00389,

i.e. expenditures exceed revenues by 0.4%. This is the amount that has to be channeled

to the pension system from the general budget in order to keep it stable. This is a

rather modest amount, in particular when compared to the alternative methods. The

use of period life expectancy and the (unadjusted) growth rate of the wage bill leads to

a permanent deficit ratio of 11% while the use of cohort life expectancy gives rise to a

permanent surplus of 10.7%.

Taking propositions 1 and 2 together, one can thus conclude that only the combination

of the adjusted growth rate of the wage bill (17c) and period life expectancy (16a) leads to

an (approximately) balanced budget if the retirement age is set according to R(t) = µT (t)

or R(t) = R. In fact, it can be shown that the same result holds if retirement age is a

linear combination of (21a) and (21b), i.e. R(t) = ςµT (t)+(1−ς)R, for 0 ≤ ς ≤ 1. In this

case (where the retirement age increases linearly with dR(t)
dt

= ςµγ) the budget is again

almost balanced for all values of ς.

4.3 Retirement age is optimally chosen

So far I have assumed that the retirement age increases linearly as a reaction to a linearly

increasing life expectancy. In this section, I want to show that under certain assumptions

this can in fact be regarded as the optimal behavior of utility-maximizing individuals. I

will also show that even for other optimal rules the budget of the NDC system will stay

approximately balanced.

In order to model the optimal choice of retirement I follow the literature that has dealt

with this issue (cf. Sheshinski 1978, Crawford & Lilien 1981, Bloom et al. 2003, Kalemli-
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Ozcan & Weil 2010). I assume that agents maximize their lifetime utility, choosing how

much to consume in each period and how long to work. I ignore the effects of any eventual

bequest motives, of the family structure and of all possible sources of uncertainty. The

intertemporal utility function for the representative member of generation t is given by:

U =

∫ T (t)

0

e−δaU(C(t, a)) da−
∫ R(t)

0

e−δaV (T (t), a) da, (22)

where C(t, a) is the level of consumption of cohort t at age a, V (T (t), a) captures the

disutility of work of generation t (with life expectancy T (t)) at age a and δ is the rate of

time preference. The stock of assets A(t, a) evolves according to:

dA(t, a)

da
= rA(t, a) + χ(t, a)(1− τ)W (t+ a) + (1− χ(t, a))P (t, a)− C(t, a), (23)

where r is the interest rate and χ(t, a) is an indicator variable with the value χ(t, a) = 1

if generation t is working and χ(t, a) = 0 if the cohort is retired. Agents choose their

consumption paths and their retirement age R(t) subject to the conditions that C(t, a) > 0

and A(t, a) ≥ 0 (no borrowing).

As is done in many papers of the related literature I focus here on the case where

wages are constant and where both the interest rate and the discount rate are zero. In

this case the first-order condition for consumption implies that each generation has a

flat consumption profile (i.e. C(t, a) = C(t), ∀a). Lifetime income Ω(t) is then given

by Ω(t) = C(t)T (t) and the first-order condition concerning the retirement age can be

written as:

V (T (t), R(t)) =
∂Ω(t)

∂R(t)
U ′(C(t)). (24)

Each generation will work as long as the costs of the additional period of work are smaller

than the benefit of this effort. The optimal retirement age thus depends crucially on the

assumption concerning the disutility function V (T (t), a).

A benchmark in the literature is the situation where V (T (t), a) is assumed to be

homogeneous of degree 0, i.e. V (αT (t), αa) = V (T (t), a) for α > 0. This amounts to

the assumption that “health status at each age improves proportionately with life ex-

pectancy. [. . .] The health status and disutility of someone working at age 45 who has a

life expectancy of 60 is the same as the health status and disutility of someone working

at age 60 who has a life expectancy of 80” (Bloom et al. 2007, p. 96). If one assumes

log utility of consumption and the combination of assumptions (17c) and (16a) it can be
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shown (see appendix A.4) that in this situation the optimal retirement age is proportional

to life expectancy, i.e. R∗(t) = µT (t), as assumed in section 4.1. In fact, in the appendix

I show that the proportional retirement age is also the optimal strategy for all other

combinations of assumptions concerning the notional interest rate and the life expectancy

concept. However, as already discussed in section 4.1, it is only the combination of (17c)

(or (17a)) and (16a) that is also associated with a balanced budget.

A proportional increase in the retirement age as a reaction to an increase in life

expectancy is, however, no longer optimal if the disutility of labor does not change pari

passu with increasing life expectancy, i.e. if V (T (t), a) is not homogeneous of degree 0. A

simple assumption that captures this phenomenon is that the disutility increases linearly

in age, i.e. V (T (t), a) = υa. In appendix A.4 I show that in this case:

R∗(t) =

√
T (t)

υ
, (21c)

i.e. the retirement age increases less than proportionally to the increase in life expectancy.

Nevertheless, it can be shown that even in this case the pension design given by (17c)

and (16a) leads to an approximately balanced budget while all other combinations of the

notional interest rates and the concept of remaining life expectancy are associated with

budgetary imbalances.

4.4 Retirement age is random

In the previous section I have used a stylized model to show that a NDC system that is

designed in the right way can remain balanced when individuals choose their retirement

age in an optimal fashion. In a realistic setting, however, one had to take into account

that the factor prices are not constant but rather fluctuating and that also the disutility

of labor is likely to change over time. The outcome of such a more realistic model will

likley lead to patterns of the retirement age that are less regular than the ones given in

(21a) or (21c). Instead of using such a more complex model I want to analyze the reaction

of the NDC system to a more erratic pattern of retirement choices in a different way. In

particular, I simply assume that — for whatever reason — the retirement age follows a

stochastic pattern and I use numerical simulations to study the budgetary consequences

of this pattern.14 I have experimented with various assumptions. Here I present the

14Details about the simulations can be found in appendix B. In particular, the simulations are based
on a discrete-time version of the model and therefore the variables R(t), d(t) etc. should be understood
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results of one example where I assume that the cohort-specific retirement age is a random

variable that is uniformly distributed around the value given by (21a).

Figure 1 shows one path for R(t) under this assumption. The pattern is not meant

to be realistic but rather represents an extreme scenario that allows to study the self-

stabilizing possibilities of NDC systems. Figure 2 reports the pattern of d(t) that emerges

in this scenario if one uses the adjusted wage bill growth and period life expectancy as its

crucial parameters.

As expected the pension system is unbalanced in almost every year and the deficit ratio

fluctuates with a minimum and maximum of 0.92 and 1.1, respectively, and a standard

deviation of 0.038. Over time, however, the surpluses and the deficits counteract each

other and the average deficit ratio over the 150 year period is 0.999. In order to smooth

out these fluctuations the pension system will need to establish a reserve fund. The

development of the assets of this fund will then not only depend on the exact pattern of

retirement behavior but also on the size of the interest rate and on the exact sequence of

surpluses and deficits. In general, however, since the deficit ratio fluctuates around 1, the

system will have a tendency to balance over time. This is in contrast to NDC systems

that are based on different combinations of the notional interest rate and remaining life

expectancy. Using the (unadjusted) growth rate of the wage bill and period (cohort) life

expectancy leads to an average deficit ratio of 1.12 (0.89). This outcome is not due to the

specific numerical example reported in Figure 1 but it has been shown for a large number

of different simulations. For any of the many simulations I have run the average deficit

ratio has been very close to 1 if one uses the appropriate design of the NDC system.

5 Conclusion

In this paper I have studied how to design a NDC pension system that is able to stabilize

its budget in the presence of increasing life expectancy. I have shown that the financial

sustainability depends on the appropriate determination of two parameters: the notional

interest rate and the measure that is used to calculate remaining life expectancy. A

combination of the growth rate of an adjusted wage bill as notional interest rate and period

life expectancy will lead to a balanced budget for a large variety of possible retirement

behaviors. These findings are a challenge to the conventional wisdom on the appropriate

design of NDC systems and none of the countries that are currently organized in such a

as Rt, dt etc. I do not make these notational substitutions here in order to keep the formulas and figures
in line with the rest of the text.
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Figure 1: The figure shows one path of the cohort-specific retirement age when R(t) is a random variable
that is uniformly distributed around R(t) = µT (t). The simulation has been run on a monthly basis while
the graph shows the annual average. The parameters were chosen as follows: τ = 0.25, µ = 0.71, γ = 0.25,
T (0) = 60 and R(t) fluctuates between 0.75 and 1.25 of the reference value.
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Figure 2: The figure reports the development of d(t) when the cohort-specific retirement age is given
by the pattern shown in figure 1. The simulation has been run on a monthly basis while the graph shows
annual values. The parameters were chosen as follows: τ = 0.25, µ = 0.71, γ = 0.25 and T (0) = 60.
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way uses the combination of parameters that suggests itself in the modeling framework

of this paper. These findings might thus be useful for the refinement of existing or the

construction of future NDC systems.

The focus of this paper has been to analyze the impact of increasing life expectancy

on the stability of PAYG pension systems. Therefore, I have abstracted from all other

economic and demographic factors that might also be potential sources of instability for

the system. First and foremost this concerns changes along the second demographic di-

mension: the size of the birth or working cohorts N(t). Different fertility scenarios have

already been studied in the related literature (cf. in particular Valdés-Prieto 2000). The

main finding is that non-monotonic shifts in the development of cohort size can lead to

short-run and/or long-run financial instability of the pension system. Irregular develop-

ments of fertility are, however, only one reason why a NDC pension system might not be

capable of achieving a balanced budget, neither in the short nor in the long run. There

exist a large number of other factors that might change in an erratic fashion, e.g. sudden

changes in the average fertility age, in the average age of labor market entry, in the age-

earnings profiles or in age-specific mortality. It is an interesting area for future research

to study and systematize the effects of these changes and to analyze their interaction with

increasing life expectancy.

Given that there are many sources for unpredictable shocks it seems inevitable that a

NDC system includes some additional mechanism that adjusts for unforeseen imbalances

like the Swedish “automatic balance mechanism” (Settergren 2012, Auerbach & Lee 2009).

Independent of the design of such an additional balance mechanism it is important to note,

however, that the appropriate definition of the notional interest rate and remaining life

expectancy will in any case lead to a more stable system and will make the activation of

the automatic balance mechanism a less frequent event.
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Appendices

A Derivations and proofs

A.1 Derivations for section 3.1

Using the expressions (11), (12) and (13) in (7) one can write the expenditures of the

NDC pension system as:

O(t) = τ

∫ T̃ (t)

R̃(t)

∫ R(t−a)

0

[
W (t)e−

∫ t
t−a+bg(s) dse

∫ t−a+R(t−a)
t−a+b ρ(s) ds

]
db

Γ(t− a,R(t− a))
e
∫ t
t−a+R(t−a)ϑ(s) dsN(t− a) da,

where I have used the fact that W (t − a + b) = W (t)e−
∫ t
t−a+bg(s) ds. For the case where

ϑ(t) = ρ(t) one can use the fact that:

e
∫ t−a+R(t−a)
t−a+b ρ(s) dse

∫ t
t−a+R(t−a)ρ(s) ds = e

∫ t
t−a+bρ(s) ds

to write O(t) in the form as shown in (14).

A.2 Derivations for a proportional retirement age

It is assumed here that retirement age follows (21a) as in section 4.1.

A.2.1 Adjusted wage bill growth and period life expectancy

When the notional interest rate is set according to (17c) and one uses period life ex-

pectancy (16a) the following relation holds:∫ R(t−a)

0

e
∫ t
t−a+b(ρ(s)−g(s)) ds db = R(t− a) (25)

and expression (14) simplifies to:

O(t) = τW (t)N

∫ T̃ (t)

R̃(t)

R(t− a)

T̃ (t− a+R(t− a))−R(t− a)
da.

24



Using R(t) = µT (t) and T̃ (t) = T (t)
1+γ

one can calculate that R(t−a)

T̃ (t−a+R(t−a))−R(t−a)
= µ(1+γ)

1−µ

and thus O(t) = τW (t)N
(
T̃ (t)− R̃(t)

)
µ(1+γ)

1−µ = τW (t)NR̃(t). Given that the revenues

of the pension system are I(t) = τW (t)L(t) = τW (t)NR̃(t) it follows that D(t) = 0 for

every period. The NDC system is in this case permanently balanced.

A.2.2 Unadjusted wage bill growth and period life expectancy

Using (17b) and (16a) leads to the following relations (for (14)):∫ t

t−a+b

(ρ(s)− g(s)) ds =

∫ t

t−a+b

γ

T (s)
ds = ln

(
T (t)

T (t− a+ b)

)
,

∫ R(t−a)

0

e
∫ t
t−a+b(ρ(s)−g(s)) ds db =

T (t)

γ
ln (1 + µγ) ,

∫ T̃ (t)

R̃(t)

T (t)
γ

ln (1 + µγ)

T̃ (t− a+R(t− a))−R(t− a)
da =

T (t)
(1 + γ)

(
1+γ

1+µγ

)
ln(1 + µγ)

γ2(1− µ)
.

The deficit ratio is therefore given as:

d(t) =
(1 + γ)(1 + µγ) ln

(
1+γ

1+µγ

)
ln(1 + µγ)

γ2µ(1− µ)
≈ 1 +

γ

2
,

where the approximation follows from a first-order Taylor expansion around γ = 0. The

use of unadjusted wage bill growth thus leads to a permanent deficit. This has also been

confirmed by numerical simulations without using the approximation.

A.2.3 Adjusted wage bill growth and cohort life expectancy

This combines (17c) and (16b). Similar steps as in A.2.1 lead to R(t−a)
T (t−a)−R(t−a)

= µT (t)
(1+γ)(1+µγ)

and thus d(t) = 1
1+γ

.
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A.2.4 Unadjusted wage bill growth and cohort life expectancy

Combining (16b) and (17b) and using similar steps as in A.2.2 leads to:

d(t) =
(1 + µγ) ln

(
1+γ

1+µγ

)
ln(1 + µγ)

γ2µ(1− µ)
≈ 1− γ

2
, (26)

In this case one faces a permanent surplus as has also been confirmed by numerical

simulations.

A.3 Derivations for constant retirement age

For this case it is assumed that retirement age is constant as specified in equation (21b)

in section 4.2.

A.3.1 Adjusted wage bill growth and period life expectancy

When the notional interest rate is set according to (17c) and one uses period life ex-

pectancy (16a) the following relations hold:∫ t

t−a+b

(ρ(s)− g(s)) ds =

∫ t

t−a+b

− γ

T (s)
ds = ln

(
T (t− a+ b)

T (t)

)
,

∫ R

0

e
∫ t
t−a+b−

γ
T (s)

ds db =
R

T (t)

(
T (t− a) +

γ

2
R
)
,

∫ T̃ (t)

R

R
T (t)

(
T (t− a) + γ

2
R
)

T̃ (t− a+R)−R
da =

R(1 + γ)

T (t)

∫ T̃ (t)

R

T (t− a) + γ
2
R

T (t− a)−R
da

=
R(1 + γ)

T (t)

(
R

(
2 + γ

2γ
ln(1 + γ)

)
+

T (t)

1 + γ
−R

)
.

Since the total revenues of the system are given by I(t) = τ̂W (t)NR̄ the deficit ratio boils

down to:

d(t) =
R(1 + γ)

T (t)

(
(2 + γ) ln(1 + γ)

2γ
− 1

)
+ 1, (27)

which, using a first-order Taylor expansion around γ = 0, is approximately 1.
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A.3.2 Adjusted wage bill growth and cohort life expectancy

Combining (16b) and (17c) and using similar steps as before one gets that:

d(t) =
R

T (t)

(
(2 + γ) ln(1 + γ)

2γ
− 1

)
+

1

1 + γ
≈ 1− γ. (28)

A.3.3 Average wage growth or wage bill growth and period or cohort life

expectancy

For a notional interest rate according to (17c) or (17a) one can define a “hybrid” life ex-

pectancy concept that uses a mixture of period and cohort life expectancy, i.e. Γ(t, R(t)) =[
ηT (t) + (1− η)(T̃ (t+R(t)))

]
−R(t), where η gives the relative weight of cohort life ex-

pectancy. It holds that: ∫ t

t−a+b

0 ds = 0,

∫ R

0

e
∫ t
t−a+b0 ds db = R,

∫ T̃ (t)

R

R

(ηT (t− a) + (1− η)(T̃ (t− a+R)))−R
da =

∫ T̃ (t)

R

R(1 + γ)

(1 + ηγ)(T (t− a)−R)
da

=
R(1 + γ)

1 + ηγ

ln(1 + γ)

γ
.

The deficits ratios for the cases with cohort and period life expectancy follow for η = 1

and η = 0, respectively.

One can calculate the “optimal” weight η∗ that leads to a permanently balanced budget

with d(t) = 1, ∀t. It comes out as:

η∗ =
1

γ2
((1 + γ) ln(1 + γ)− γ) ≈ 1

2

(
1− γ

3

)
. (29)

A mixture of both life expectancy concepts with η = η∗ will thus lead to a balanced NDC

system in the case where the retirement age does not react to increasing life expectancy.

For γ = 1/4, e.g., the optimal value is η∗ = 0.46 and thus puts slightly more weight on

period life expectancy.
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A.4 Derivations for an optimal retirement age

The derivation of the optimal retirement age is not straightforward. The main difficulty

stems from the fact that the optimal choice, given by the first-order condition (24), de-

pends on ∂Ω(t)
∂R(t)

, the reaction of lifetime income to prolonging the work life. This effect

itself depends on the streams of pension payments which again depend — via the notional

interest rate — on the retirement behavior of past and future cohorts. The way I deal

with this problem is to first make a conjecture concerning the solution for R(t). I will then

use this solution to determine the path of notional interest rates and finally verify that

— given this path — the conjectured choice of retirement is in fact the optimal solution.

A.4.1 The case where V (T (t), a) is homogeneous of degree 0

My conjecture in this case is that the optimal retirement age is proportional to life ex-

pectancy, i.e. R(t) = µT (t). From section 4.1 it is known that in this case gL(t) = γ
T (t)

. I

start with the benchmark case where the notional interest rate is given by the adjusted

growth rate of the wage bill (17c) and the calculation of remaining life expectancy is

based on period life expectancy (16a). Under the assumption that wages are constant

(i.e. W (t + a) = W ) it follows that P (t, a) = τWR(t)

R̃(t+R(t))−R(t)
and lifetime income can be

written as:

Ω(t) = (1− τ)WR(t) + (T (t)−R(t))
τWR(t)

R̃(t+R(t))−R(t)
,

which has to be equal to lifetime consumption given by CT (t).

For R(t) = µT (t) lifetime income reduces to Ω(t) = (1 + τWγ)R(t). On the other

hand, the disutility of labor at the time of retirement can be written as V (T (t), R(t)) =

V (1, R(t)
T (t)

) = V (1, µ) which is a time-independent expression. Furthermore, ∂Ω(t)
∂R(t)

= W (1+

τγ) and U ′(C) = 1
Wµ(1+τγ)

. From (24) the solution for the optimal µ∗ is thus implicitely

given by the equation:

V (1, µ∗) =
1

µ∗
. (30)

It can thus be concluded that R(t) = µ∗T (t) is in fact the optimal solution to the first-

order condition (24) as conjectured in the first place. If V (T (t), a) = υ (as used by

Kalemli-Ozcan & Weil (2010)), i.e. disutility of labor is constant and age-independent,

the solution to (30) is given by µ∗ = 1
υ
. If V (T (t), a) = υe

a
T (t) (as used by Bloom et al.

(2007)) the solution can be derived (numerically) from 1
µ∗

= υeµ
∗
.

In order to derive the optimal solutions for other combinations of the assumptions
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concerning the notional interest rate and remaining life expectancy one has to repeat

these steps. It can be shown that under the conjecture that R(t) = µT (t) each combi-

nation of assumptions (17a) to (17c) and assumptions (16a) and (16b) leads to a situa-

tion where a generation’s total pension income can be approximated (around γ = 0) as:∫ T (t)

R(t)
P (t, a) da = χR(t)τW , for some parameter χ. Lifetime income is thus approximately

given as: Ω(t) = R(t)W (1 + τ(χ− 1)) and the constant consumption level is given by:

C(t) = R(t)W (1+τ(χ−1))
T (t)

. From these expressions one can derive that ∂Ω(t)
∂R(t)

U ′(C(t)) = T (t)
R(t)

=
1
µ
. This is the same result as for the case with assumptions (17c) and (16a) and again

confirms the conjecture that R(t) = µT (t).

A.4.2 The case where V (T (t), a) = υa

For this case the conjecture is that the optimal retirement age is given by R(t) =
√

T (t)
υ

.

The period-specific retirement age R̃(t) can be derived as: R̃(t) =
−γ+
√
γ2+4υT (t)

2υ
and thus

the growth rate of the labor force comes out as: gL(t) = γ
2T (t)

(
1 + γ√

γ2+4υT (t)

)
. Similarly

as in the case above, one can show that for all combinations of assumptions concerning

the notional interest rate and remaining life expectancy the total pension income can be

approximated as:

∫ T (t)

R(t)

P (t, a) da =

∫ T (t)

R(t)

∫ R(t)

0
e
∫ t+a
t+b ρ(s) ds db

Γ(t, R(t))−R(t)
da ≈ χR(t).

Then one can again write ∂Ω(t)
∂R(t)

U ′(C(t)) = T (t)
R(t)

and thus the first-order condition (24)

reduces to υR(t) = T (t)
R(t)

which has the solution R(t) =
√

T (t)
υ

, thereby verifying the

conjecture.

As in the cases with proportional and constant retirement age (cf. Tables 1 and 2)

only the combination of assumptions (17c) and (16a) lead to a balanced budget. This is

documented in Table 3.
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Table 3: The deficit-ratio for a non-proportional retirement age

(1) (2) (3)
Notional Interest Rate — Growth Rate of:

Average Wages Wage Bill Adjusted Wage Bill

Period Life Expectancy ≈ 1 + γ
4

≈ 1 + γ
2

≈ 1

Cohort Life Expectancy ≈ 1− 3γ
4

≈ 1− γ
2

≈ 1− γ

Note: The table shows the period deficit ratio d(t) = O(t)
I(t) for various assumption about

the notional interest rate and the measure of remaining life expectancy. Period [cohort]
life expectancy is defined as in (16a) [(16b)]. The notional interest rate is given by one of
the expressions in (17a), (17b) and (17c), respectively. Furthermore, it is assumed that

retirement age is given by R(t) =
√

T (t)
υ .

B Simulations

In order to study the behavior of the NDC system for arbitrary patterns of retirement one

has to rely on numerical simulations. For this purpose one also has to use a discrete-time

version of the continuous-time set-up presented in section 3.1 of the paper. While allow-

ing for a wide range of assumption, this discrete-time framework has the disadvantage

that many of the precise results derived in the paper are only valid in an approximate

sense. The main problem is that the discrete-time version only allows for integer val-

ues of life expectancy and retirement age while the development of life expectancy and

the assumptions about parallel retirement adjustments involve non-integer values. The

following equations are used for the simulation:

Tt = Round (T0 + γ·t) ,

Lt =
T̃t∑
a=1

It−a+1,aNt−a+1,
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where T̃t is the maximum age observed in period t and It,s is an indicator variable with

It,s = 1 if generation t works at age s and It,s = 0 otherwise.

Bt =
T̃t∑
a=1

(1− It−a+1,a)Nt−a+1,

zt =
Bt

Lt
,

It = τ

T̃t∑
a=1

It−a+1,aWtNt−a+1,

Ot =
T̃t∑
a=1

(1− It−a+1,a)Pt−a+1,aNt−a+1,

Kt,Rt =
Rt∑
a=1

τWt+a−1Ψt+a−1,t+Rt ,

where Ψt+a−1,t+Rt is the cumulative notional interest rate factor given by:

Ψt+a−1,t+Rt =
t+Rt∏
s=t+a

(1 + ρs),

for 1 ≤ a ≤ Rt and ρt is the notional interest rate from period t−1 to t. The first pension

that is received by generation t in period t+Rt is given by:

Pt,Rt =
Kt,Rt

Γt,Rt
.

Existing pensions are adjusted according to:

Pt,a = Pt,RtΘt+Rt,t+a−1,

where Θt+Rt,t+a−1 is the cumulative adjustment rate factor given by:

Θt+Rt,t+a−1 =
t+a−1∏

s=t+Rt+1

(1 + ϑs),

for Rt + 2 ≤ a ≤ Tt and ϑt is the adjustment rate from period t − 1 to t. The two

possibilities for specifying the remaining life expectancy (equations (16a) and (16b)) are
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now given by:

Γt,Rt = T̃t+Rt −Rt,

Γt,Rt = Tt −Rt.

The different types of notional interest rate are again given by:

ρt = gWt ,

ρt = gWt + gLt ,

ρt = gWt + gLt −
γ

Tt−1

,

where now gWt = Wt−Wt−1

Wt−1
, gLt = Lt−Lt−1

Lt−1
and where gLt = γ

Tt−1
if the retirement age is

chosen according to R̃t = µT̃t (or the respective integer values thereof).
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